

High Meadows Environmental Institute

Multilayer simulation of wind-forced breaking wave fields statistics and Langmuir turbulence

Rui Yang¹, Jiarong Wu^{1,2}, Nicolò Scapin^{1,6}, J. Thomas Farrar³, Bertrand Chapron⁴, Stéphane Popinet⁵ and Luc Deike^{1,6,*}

International Ocean Vector Winds Science Team (IOVWST) Meeting Darmstadt, Germany (May, 5-8th 2025)

- 1. Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540, USA
- 2. Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
- 3. Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA, USA
- 5. Sorbonne Universite, CNRS, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
- 6. High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08540, USA

4. IFREMER, Univ. Brest, CNRS, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), Plouzané, France

Wave breaking - from single breakers to broadband wave field

Continuous wave breaking on various scales

Broadband wave field (Wu et al. 2023, 2025)

Goal:

Broadband wave field

Single breaker

Wave breaking: enhanced mass transfer and contribute to upper ocean current and mixing.

Study breaking waves statistics and underwater dissipation in the wind-forced broadband wave field.

Langmuir circulation

- Enhances vertical and lateral ocean surface mixing
- Accelerates the dispersion of pollutants and microplastics
- Regulates the transport of surface heat, momentum, and gases

Goal:

- Can we observe the Langmuir circulation in simulations?

Counter-rotating vortices near the ocean's surface and aligned with the wind, developed when wind blows steadily over the sea surface.

• Study breaking waves statistics and underwater dissipation in the wind-forced broadband wave field.

(Thorpe 2004)

'Y JUNCTION

Multilayer model

- Multilayer model http://basilisk.fr/src/layered/README (Popinet 2020).
- Discretization: horizontally Eulerian and vertically Lagrangian coordinates. \bullet
- equations with the interface.

Governing equations

Layer evolution:
$$\frac{\partial h_l}{\partial t} + \nabla_H \cdot (h\boldsymbol{u})_l = 0,$$
ontal momentum:
$$\frac{\partial (h\boldsymbol{u})_l}{\partial t} + \nabla_H \cdot (h\boldsymbol{u}\boldsymbol{u})_l = -gh_l \nabla_H \eta - \nabla_H (hp_{nh})$$

$$+ [p_{nh} \nabla_H z]_l + [v \partial_z \boldsymbol{u}]_l$$
tical momentum:
$$\frac{\partial (hw)_l}{\partial t} + \nabla_H \cdot (hw\boldsymbol{u})_l = -[p_{nh}]_l + [v \partial_z w]_l + v$$

ass conservation:ass conservation:
$$\nabla_H \cdot (h\boldsymbol{u})_l + [w - \boldsymbol{u} \cdot \nabla_H z]_l = 0,$$

ar transportation:ar transportation:
$$\frac{\partial (hT)_l}{\partial t} + \nabla \cdot (hT\boldsymbol{u})_l = 0,$$

 p_{nh} : non-hydrostatic pressure

T: passive tracer

Bridge between the hydrostatic Saint-Venant/shallow-water equations and the incompressible Navier-Stokes

Ability to simulate breaking wave

Good agreement with DNS for wave breaking (Wu et al. 2023)

Wind-forcing schemes derivation

Additional wind-forcing scheme is needed for multilayer simulation

(Wu et al. 2023)

Wave form drag formula

Local wave form drag: $F_p(x, y, t) = p_s(x, y, t)\eta_x(x, y, t)$

Total form drag from Miles' theory: $F_p^{Miles} = \frac{1}{2}\beta(ak)^2\tau_0 = \frac{1}{2}\beta(ak)^2\rho_a u_*^2 \text{ (Miles 1957)}$

In the multilayer simulation, we assume surface pressure: $p_s(x, y, t) = p_0(t)\eta_x(x, y, t)$

Total form drag from simulation:

$$F_p^{sim} = \langle p_s \eta_x \rangle = \langle p_0 \eta_x^2 \rangle = \frac{1}{2} p_0 (ak)^2$$

 p_0 is constant with time, in accordance with Miles' theory

Validations for 2D single-wave

2D decaying wave

$$E = E_0 \exp\left(-4\nu k^2 t\right)$$

(Fedorov & Melville, JFM, 1998) 1.50 $---- Re = 4 \times 10^4, N_h = 2048$ ----- $Re = 4 \times 10^4, N_h = 2560$ 1.25 1.00 E/E_0 0.75 0.50 0.25 0.00 100 300 200 0 t/T_0

The multilayer simulation results match well with theoretical predictions for forcing.

Simulation setup: wind forcing on a broad-banded wave field

Main control parameters (without forcing):

- Dimensional:

$$k_p, H_s, \rho, \nu, g$$

- Dimensionless:

 $H = 80 \mathrm{m}$

- Wave steepness: $k_p H_s = [0.1 0.4]$ (main parameter)
- Reynolds number: $Re = c_p \lambda_p / \nu$

Initial condition:

A typical wind wave energy spectrum (Wu et al. 2023): $\phi(k) = Pg^{-1/2}k^{-5/2} \exp[-1.25(k_p/k)^2]$

Upper ocean turbulence under wind-wave breaking

- -2
- Wave statistics?

η [m] 2

 Underwater dissipation? • Flow and scalar field patterns?

Wind input source term compared to spectral formulation S_{in}

• We calculate the spectral S_{in} from our simulation based on

Real:
$$S_{in}(x, y) = \frac{1}{\rho_w g} \frac{p_s(x, y) \mathbf{n} \cdot \mathbf{u}_s}{\sqrt{\rho_w g}} \approx p_s(x, y) \cdot u_z(x, y)$$

Normal pressure Surface velocity
 $\mathcal{O}(\hat{\mathbf{n}} - \hat{\mathbf{u}}^{\dagger})$

Spectral: $\hat{S}_{in}(k,\theta) = \frac{\mathscr{R}(p_s \cdot u_z)}{\rho_w g}$ $\cdot^+ - \text{complex conjugate}$

• We compare with the S_{in} model from Janssen (1989, 1991):

$$\hat{S}_{in}(k,\theta) = \frac{\rho_a}{\rho_w} \beta \left(\frac{u_*}{c}\cos\theta_w\right)^2 \omega F(k,\theta), \ \beta = 50$$

also the model from WAMDI group 1988:

$$\hat{S}_{in}(k,\theta) = 0.25 \frac{\rho_a}{\rho_w} \left(\frac{28u_*}{c}\cos\theta - 1\right) \omega F(k,\theta)$$

Forcing parameters

<i>u</i> _* [m/s]	c_p/u_*	<i>U</i> _s [m/s]	La
0.84	9.4	0.02–0.16	0.42-1.20
1.9	4.2	0.02 - 0.4	0.40 - 1.80
1.92	4.1	0.19–0.41	0.40-0.59
1.92	4.1	0.13-0.38	0.40-0.71

 u_* - from $S_{in}(k)$ J89 model fit

Evolution of wave statistics

$$\phi(k) = \int F(k,\theta)kd\theta, \ F(k,\theta) = \hat{\eta} \cdot \hat{\eta}^{+} = |\hat{\eta}|^{2}$$

- Saturation: k^{-3} spectral shape.
- As time evolves, the wave grows and k_p decreases

Nondimensional energy: $\varepsilon_* =$ Effective fetch: $X = U_{10}(t + t_0)$ Nondimensional fetch: $X_* = \frac{gX}{u_*^2}$ Nondimensional peak frequency: $\nu_* =$

Nondimensional fetch limited relationships

• Multilayer simulation results follow the fetch-limited relationships from reference data from Romero & Melville, 2010

Breaking distribution

- $\Lambda(c)$ The breaking front length at the local wave speed c, captured by the local wave curvature.
- Phillips' theoretical prediction.

• $\Lambda(c)$ distribution depends on the wind-wave condition, while the $\Lambda(c) \sim c^{-6}$ scaling always exists and follows

• $\Lambda(c)$ rescaled by the r.m.s. slope σ collapse the distributions under different wind-wave conditions (Wu et al. 2023).

Upper ocean turbulence under wind-wave breaking

- Wave statistics?
- Underwater dissipation?

• Flow and scalar field patterns?

Dissipation profiles

- The dissipation profiles calculated by $\varepsilon(z) = \nu \langle s_{ij} s_{ij} \rangle$
- The near-surface dissipation (above -2m) profile reach a steady state, while deeper water dissipation keeps increasing as the wave-breaking induced turbulence keeps penetrating into deeper water as time evolves.

Normalized dissipation profiles

 Φ - depth-integrated dissipation

- We normalize the dissipation profiles in two different ways.
- predictions (Wu et al. 2025; Romero 2021).
- Sutherland & Melville 2015.

The normalized dissipation profiles by the depth-integrated dissipation rate show a good collapse and the model

• The normalized dissipation profiles by F_{in} shows a dependence on c_p/u_* , in agreement with the data from

Dissipation & F_{in} , F_{ds}

- The total dissipation and F_{in} from the multilayer simulation agrees with field data
- F_{ds} is the dissipation from wave breaking.

• F_{ds} from simulation depends on the estimation of the breaking parameter b, especially at low $k_p H_s$

Upper ocean turbulence under wind-wave breaking

We add passive tracer initially at z > -1.3m

- Wave statistics?
- Underwater dissipation?

Flow and scalar field patterns?

Scalar field evolution

The scalar field at the initial interface for the growing case

1.0- 0.8 c/c_{max} - 0.4 - 0.2 0.0

Wind

• At the very beginning

- 0.8

Langmuir circulation pattern

As time evolves, the velocity magnitude and the typical length scale increases, and the velocity penetrates deeper.

Evolution of LC - velocity scale

- u_v is averaged within one wave period
- . Stokes drift is calculated by $U_s = 2g^{1/2} \left| k^{3/2} \phi(k) dk \right|$

(Thorpe 2004)

• The velocity statistics follows the field data.

Craik–Leibovich (CL) mechanism for Langmuir circulation

Craik–Leibovich (CL) mechanism for Langmuir circulation

The cross-spectrums show the contribution of the tilting terms to ω_x at different k

- CL2 dominates the vorticity tilting through the k-regime
- CL1 contributes to the low-k regime

The spatial distribution of Stokes drift could be important in the large-scale LC pattern, consistent with the findings from recent studies (Fujiwara & Yoshikawa 2020; Scully & Zippel 2024)

Conclusion

- wave field.
- velocity strength, and vorticity.

High Meadows Environmental Institute

We proposed two forcing schemes for the multilayer simulation of the wind-forced broadband

• We quantitatively compared the wave statistics, wave breaking statistics, S_{in} & S_{ds} , underwater dissipation profile, and scalings with references data, which all show reasonable agreements.

• We observed the evolution of the scalar field pattern from a wave-like pattern to a small-scale streak pattern to a large-scale Langmuir pattern. We also quantitatively analyzed the spacing,

Thanks!

